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Abstract

In this paper, we formulate a hierarchical Bayesian version of the
Mixture of Unigrams model for text clustering and approach its pos-
terior inference through variational inference. We compute the explicit
expression of the variational objective function for our hierarchical
model under a mean-field approximation. We then derive the update
equations of a suitable algorithm based on coordinate ascent to find
local maxima of the variational target, and estimate the model parame-
ters through the optimized variational hyperparameters. The advantages
of variational algorithms over traditional Markov Chain Monte Carlo
methods based on iterative posterior sampling are also discussed in detail.
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1 Introduction

Text clustering is a data analysis activity that has become increasingly impor-
tant with the availability of large collections of text data from the Web
(Andrews and Fox, 2007; Aggarwal and Zhai, 2012). Once the corpus has been
suitably transformed into a structured data source, each document is assigned,
in an unsupervised manner, to a single label indicating the thematic content of
the document itself. The main underlying assumption is that a document can
be represented as a Bag-of-Words (BOW; Harris, 1954), in the sense that both
the syntax and the order of occurrence of individual terms are not relevant for
decoding the semantics, but only the frequency of occurrence of each term. In
other words, each document can be represented as a high-dimensional vector
of counts, and documents with different thematic content (topic) will tend to
be dissimilar, in the sense that terms that occur frequently in documents of
one class will tend to be less frequent in documents of other classes.

Since documents are converted into numerical vectors, the most obvious
approach is to use classical hierarchical algorithms based on purely geomet-
ric notions, such as the distance between two points in a p-dimensional space,
where clusters are sets of nested subsets arranged as a tree. Iterative par-
titioning algorithms, such as k-means, are another possibility. Each of these
approaches has its advantages and disadvantages, both in terms of computa-
tional cost and accuracy in forming clusters, and we refer the reader to the
extensive literature on this topic (Anastasiu et al, 2014; Xu and Tian, 2015) for
further discussion. An alternative view is the probabilistic approach, in which
the overall likelihood function of a corpus is modeled as a finite mixture of
Multinomial distributions, each of which is determined by a particular proba-
bility distribution of the frequency of occurrence of terms (Nigam et al, 2000).
A topic is then identified as a probability distribution over the vocabulary of
terms. This model, commonly known as mixture of Unigrams, has been gener-
alized in several directions in the literature. For example, latent topic models
are extremely flexible generative models that allow for multiple topics to occur
simultaneously in a single document because different words in the document
can be assigned to different topics (Blei et al, 2003; Blei and Lafferty, 2007;
Blei, 2012).

Mixtures of Unigrams are finite mixtures of Multinomial likelihoods and, as
such, can be represented by a hierarchical Bayesian model by introducing a set
of latent variables that describe to which component of the mixture each obser-
vation belongs. The model is augmented by a set of prior distributions for the
weights of the mixture and the likelihood parameters, with hyperparameters
set in such a way that these distributions are weakly informative (Gelman et al,
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2013). Learning the parameters of this hierarchical full-Bayes model has tradi-
tionally been dominated in the literature by the use of iterative Markov Chain
Monte Carlo methods (MCMC; Frühwirth-Schnatter, 2006). However, their
behavior is often problematic due to the geometric properties of the likelihood
surface, which is invariant for each of the k! permutations of the component
indices (when the mixture has k components). When the prior distributions of
the model parameters are symmetric, this invariance is transferred to the pos-
terior distribution, with the result that any MCMC algorithm tends to jump
between the posterior modes and produce inconsistent estimates. This phe-
nomenon, known as label switching, reflects the impossibility of learning any
feature of the mixture model that depends on the labels of the components
(Celeux et al, 2018b). The use of MCMC methods is also problematic when we
are dealing with the “big k problem” (i.e., with high-dimensional mixtures). In
this case, schemes based on the Metropolis-Hastings algorithm are difficult to
tune, while the use of Gibbs sampling tends to produce extremely sparse par-
titions when the posterior estimates of the latent variables are used to assign
the observations to the components of the mixture (Chandra et al, 2020).

In contrast to MCMC methods, the variational approach to posterior
inference is based on optimization. The posterior surface is approximated by
a suitable non-concave objective function depending on a set of variational
hyperparameters that control the quality of the approximation (Blei et al,
2017). This objective function is maximized by an ad-hoc coordinate ascent
variational inference (CAVI) algorithm. Each run of the algorithm converges
to a single local maximum of the objective function, and multiple runs can
be used to find the best one and estimate the model parameters through the
optimized variational hyperparameters. The method does not suffer from the
difficulties associated with label switching, since only a single mode is explored
at a time, nor is it affected by the curse of dimensionality, since the exploration
of modes is limited only by the available computational resources.

Given the scenario described above, in this paper we make a number of
contributions to the variational inference of generative models for textual data.
First, we formulate a hierarchical Bayesian version of the Mixture of Uni-
grams model and approach its posterior inference through a special variational
method known as mean-field inference (Plummer et al, 2020). We calculate
the explicit expression of the objective function for our hierarchical model
under this variational approximation. The variational target is also known as
the Evidence Lower Bound (ELBO). We then derive the update equations of
the CAVI algorithm to find local maxima of the ELBO. Finally, we show how
these algorithmic tools can be applied in the context of Bayesian text clus-
tering. Last but not least, we conduct a simulation experiment to investigate
the goodness of the approximation of the marginal likelihood by the output of
the variational procedure for the purpose of model selection (i.e., selecting the
number of components of the mixture).

The paper is organized as follows. Section 2 introduces the basic notation
and presents the details of our Bayesian hierarchical mixture of Unigrams.
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Section 3 describes the mean-field variational inference for the proposed model.
Section 4 compares the advantages of optimization-based posterior varia-
tional inference with the computational difficulties of using traditional iterative
MCMC algorithms. Section 5 describes the CAVI variational algorithm for
posterior parameter estimation based on iterative coordinate ascent and also
discusses its computational complexity. Section 6 presents some experimental
results on using the proposed model for text clustering and compares it with
some benchmark clustering procedures. The problem of choosing the number
of components is also investigated using a simulation study. Section 7 reports
a bird’s eye view of the advantages and disadvantages of variational inference,
draws some conclusions, and outlines possible future work.

2 Hierarchical Dirichlet-Multinomial mixtures

2.1 Basic definitions and notation

Suppose we have a vocabulary V with p = |V | terms from a corpus of n docu-
ments. We make the usual hypothesis that the data generating mechanism can
be viewed as a generative probabilistic model that outputs infinitely exchange-
able streams of terms, such that any two finite sequences of the same length,
differing only in the order of occurrence of the terms, are generated with the
same probability and are considered the same BOW (Gelman et al, 2013). In
practice, the BOW representation is a feature generation tool, since the i-th
document, where i = 1, 2, . . . , n, can be represented as a vector of counts:

yi = (yi1, yi2, . . . , yip), (1)

where yiℓ, for ℓ = 1, 2, . . . , p, provides the number of occurrences for the ℓ-th
term in the vocabulary V .

In language model theory, infinite exchangeability is often reformulated in a
simpler way by assuming that for any document, the probability of occurrence
of a word in V does not depend on its position in the document, and that the
probability of occurrence of a finite stream of words of arbitrary length can
be factored as the product of the corresponding marginal probabilities. These
conditions define the Unigram language model (Nigam et al, 2000), under
which the likelihood of the vector of counts yi for the i-th document takes the
familiar Multinomial form:

p(yi|β) =
(∑p

ℓ=1 yiℓ
)
!∏p

ℓ=1 yiℓ!

p∏
ℓ=1

βyiℓ

ℓ , (2)

where β = (β1, β2, . . . , βp) ∈ Rp is the vector of Multinomial parameters that
must satisfy the constraints βℓ > 0 for ℓ = 1, 2, . . . , p and

∑p
ℓ=1 βℓ = 1.

Another standard document-wise hypothesis is that the documents in the
corpus are assumed to be conditionally independent given the Multinomial
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parameters. It is also worth pointing out the role of the Multinomial coefficient,
usually abbreviated as follows:(∑p

ℓ=1 yiℓ
)
!∏p

ℓ=1 yiℓ!
≡
(
yi+
yi

)
,

with yi+ = yi1+yi2+ · · ·+yip. The parameter yi+ (the length of the i-th docu-
ment) is a nuisance parameter that enters only into the normalization constant
and is therefore irrelevant for the inference from the posterior distribution of
parameters.

2.2 The hierarchical model

Extending the Unigram model to a hierarchical mixture of Unigrams intro-
duces additional probabilistic levels to increase flexibility. We now assume that
each document in the corpus can be assigned to one and only one of k dif-
ferent thematic contents (or topics). Under this hypothesis, the entire corpus
is probabilistically modeled as a finite mixture model written as the following
hierarchical specification based on the Multinomial likelihood:

yi|β, zi
ind.∼ Multinomialp(βj), i = 1, 2, . . . , n, (3)

zi|λ
ind.∼ Multinoullik(λ), i = 1, 2, . . . , n, (4)

βj |θ
ind.∼ Dirichletp(1pθ), j = 1, 2, . . . , k, (5)

λ|α ∼ Dirichletk(1kα), (6)

where α, θ > 0 are strictly positive real numbers and 1 denotes a vector of all
ones. The Multinomial parameters are combined into a matrix β ∈ Rk×p:

β = {βjℓ}, j = 1, 2, . . . , k, ℓ = 1, 2, . . . , p, (7)

where each row of the β matrix is a discrete probability distribution βj ∈ Rp

representing a topic, that is a probability distribution of the vocabulary of
terms V , since different documents may have different thematic content in
the sense that terms that occur frequently in one document may be of little
importance in another. A priori, we do not know the thematic content of each
document, or in other words, we do not know what βj distribution determines
the probability of occurrence of words. This means that for a given document,
the row index j that selects the corresponding distribution from the β matrix
is a latent variable, which can be modeled with the latent indicator vector
zi ∈ Rk such that zij = 1 and zij′ = 0 for j′ ̸= j, while λ ∈ Rk denotes the
mixture weights (Robert, 2007).

We assume that the hyperparameters θ and α are fixed and known. Since
they are used to fully specify the highest level of the hierarchical structure, it
is common to choose a non-informative (or otherwise weakly informative) set-
ting, such as θ = 1. With this choice, the prior distribution (5) is uniform over
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the k-dimensional simplex. Of course, this is not the only possible setting. For
example, Wallach et al (2009) consider the possibility of using an asymmetric
Dirichlet prior (where the hyperparameters vary across the components) and
discuss the advantages of this choice. In this case, a mixed variational/em-
pirical Bayes procedure can be used for parameter estimation. Although this
situation is not the focus of this paper, we will discuss this possibility in more
detail in Section 7. It is also worth noting that a symmetric Dirichlet prior
corresponds to an exchangeable prior over the Multinomial parameters, which
implicitly gives the data more weight in updating the posterior distribution of
each βj with an appropriate (weakly informative) choice of the concentration
parameter θ. This model is minimal in the sense that it can provide a baseline
specification to illustrate our framework for Bayesian posterior inference, a
specification that can be enriched with better structured and informed priors,
as discussed in more detail in Section 7.

The unnormalized posterior distribution of the model parameters can be
factored as follows:

p(β, z, λ|y, θ, α) ∝ p(y|z, β, λ, θ, α)p(β, z, λ|θ, α) =
= p(y|β, z)p(z|λ)p(β|θ)p(λ|α), (8)

where y = (y1, y2, . . . , yn). The graphical representation of this dependence
structure between random variables can be seen in Figure 1. As mentioned
above, the hyperparameters θ and α are fixed, but we still use them explicitly
in the notation.

Fig. 1 Directed Acyclic Graph (DAG) representation of the hierarchical Dirichlet-
Multinomial multinomial mixture model. Circles represent stochastic nodes that may be
observed (data) or unobserved (latent variables); arrows denote stochastic dependence. The
number of conditionally independent components of each stochastic node (except λ, which
has only one component) is given in the bottom-right corner of the enclosing plates. The
hyperparameters θ, α ∈ R enclosed in a square are fixed and known.

Taking advantage of the conditional independence between the marginal
components of the likelihood and the prior distributions of the model
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parameters, the marginal likelihood of the model is:

p(y|θ, α) =
n∏

i=1

∫ ∑
zi

p(yi|β, zi)p(zi|λ)p(β|θ)p(λ|α)dλdβ, (9)

which is clearly intractable. Therefore, the unnormalized posterior distribution
(8) is not available in closed form, and we must resort to appropriate numerical
methods for Bayesian estimation of the model parameters.

Equally interesting is the finding that the variance of each class-conditional
likelihood exhibits overdispersion compared to the standard Multinomial dis-
tribution, as a consequence of explicitly accounting for the variability of
the Multinomial probabilities across topics. We give further details on this
phenomenon in the Appendix A.

3 Approximate posterior inference

To achieve our goals, we propose an optimization-based algorithm for the
posterior parameter estimation of our hierarchical Dirichlet-Multinomial mix-
ture model. To address the problem of analytic intractability of the marginal
distribution (9), we will use an approach known in the literature as varia-
tional inference (Jordan et al, 1999; Blei et al, 2017). The starting point is to
approximate the posterior distribution p(β, z, λ|y, θ, α) by a variational distri-
bution q(β, z, λ|ν), which itself depends on the variational parameters ν. Our
optimization problem is:

ν⋆ = argmin
ν

KL (q(β, z, λ|ν)||p(β, z, λ|y, θ, α)) , (10)

where the variational objective is the reverse Kullback-Leibler (KL) divergence
between the posterior distribution and the variational distribution (Murphy,
2012). The solution of (10) provides the best possible approximation to the
intractable posterior distribution with respect to the KL-divergence, and the
optimized variational distribution q(β, z, λ|ν⋆) is used to approximate the pos-
terior inference of the model parameters. In this way, the posterior inference
is treated as an optimization problem rather than a Monte Carlo sampling
problem (Ghahramani, 2015).

The search for the optimal approximating distribution can be greatly
simplified if we define the Evidence Lower Bound (ELBO) as follows:

ELBO(q) = Eq [log p(y, z, β, λ|θ, α)]− Eq [log q(β, z, λ|ν)] , (11)

which is a functional of the variational distribution q. By making explicit the
expression of the expected values in (11), the ELBO is a function of both the
variational parameters and the hyperparameters θ and α. It can then be shown
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that (Zhang et al, 2019; Tran et al, 2021):

log p(y|θ, α) = ELBO(q) + KL (q(β, z, λ|ν)||p(β, z, λ|y, θ, α)) . (12)

Since the KL-term is always positive, minimizing the KL-divergence with
respect to the variational parameters is equivalent to maximizing the ELBO
with respect to the variational parameters, and:

log p(y|θ, α) ≥ ELBO(q),

i.e., the ELBO is a lower bound on the marginal log-likelihood. Therefore,
minimizing (10) with respect to the variational parameters is equivalent to
determining the tightest possible lower bound on the marginal log-likelihood.

3.1 Mean-field variational inference

To implement variational inference, we chose to specify the variational distri-
bution q(β, z, λ|ν) using a classical mean-field approximation with independent
components (Wainwright and Jordan, 2007; Blei et al, 2017):

q(β, z, λ|ν) =
k∏

j=1

q(βj |ϕj)×
n∏

i=1

q(zi|γi)× q(λ|η),

where ϕj ∈ Rp, γi, η ∈ Rk, and:

βj |ϕj
ind.∼ Dirichletp(ϕj), j = 1, 2, . . . , k (13)

zi|γi
ind.∼ Multinoullik(γi), i = 1, 2, . . . , n (14)

λ|η ∼ Dirichletk(η). (15)

Fig. 2 Graphical representation of the mean-field variational approximation used to approx-
imate the posterior distribution of the proposed model.
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In this specification, the variational parameters γi are probability distribu-
tions, while ϕj and η satisfy the only constraint that their components must
be positive. The graphical representation of this collection of distributions,
shown in Figure 2, shows how the latent indicator variable z and the mix-
ture weights λ are decoupled in the variational distribution q (unlike in the
hierarchical model formulation). Moreover, each latent indicator variable has
a specific variational parameter, since we want to approximate the posterior
distribution of each marginal component of the latent vector z.

For the model we are dealing with, the ELBO has the following expression
(the derivation of this expression is given in Appendix B):

ELBO(q) =
n∑

i=1

p∑
ℓ=1

k∑
j=1

yiℓγij

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+ (16)

+

n∑
i=1

k∑
j=1

γij

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
+ (17)

+ k log Γ(pθ)− kp log Γ(θ)+

+

k∑
j=1

p∑
ℓ=1

(θ − 1)

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+ (18)

+ log Γ(kα)− k log Γ(α)+

+

k∑
j=1

(α− 1)

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
− (19)

−
k∑

j=1

log Γ

(
p∑

ℓ=1

ϕjℓ

)
+

k∑
j=1

p∑
ℓ=1

log Γ(ϕjℓ)−

−
k∑

j=1

p∑
ℓ=1

(ϕjℓ − 1)

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
− (20)

−
n∑

i=1

k∑
j=1

γij log γij− (21)

− log Γ

(
k∑

j=1

ηj

)
+

k∑
j=1

log Γ(ηj)−

−
k∑

j=1

(ηj − 1)

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
, (22)

where Ψ(·) indicates the Digamma function (logarithmic derivative of the
Gamma function):

Ψ(z) =
d

dz
Γ(z) =

Γ′(z)

Γ(z)
.
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Note that the form of the class-conditional distributions is not used in
computing the ELBO expression. Instead, eqs. (16) to (19) reflect the terms of
the hierarchical structure of the model, so that the computation of ELBO can
be easily extended as the model becomes more complex by adding new levels
(the same holds for ELBO terms that depend on the variational distribution).

4 Sampling-based versus optimization-based
posterior inference

To obtain the joint distribution of the data and latent variables, we can com-
bine (3) and (4). Given the conditional independence assumptions, the joint
distribution of data and latent indicators is:

p(y, z|β, λ) =
n∏

i=1

p(yi, zi|β, λ) =
n∏

i=1

p(yi|β, zi)p(zi|λ) =

=

n∏
i=1

k∏
j=1

p(yi|βj)
zijλ

zij
j =

n∏
i=1

k∏
j=1

[λjp(yi|βj)]
zij . (23)

To marginalize with respect to the latent variables, we need to sum with
respect to all possible z configurations, leading to the familiar likelihood rep-
resentation that does not rely on the introduction of latent indicators into the
model:

p(yi|β, λ) =
∑
zi

p(yi|β, zi)p(zi|λ) =
∑
zi

k∏
s=1

[λsp(yi|βs)]
zis

=

k∑
j=1

λjp(yi|βj), (24)

which is invariant for each of the k! possible permutations of the summands. If
we assume an exchangeable prior over the parameters of (24), this invariance is
inherited by the posterior distribution, which has k! symmetric modal regions
corresponding to all possible permutations of the parameter labels. This phe-
nomenon is known in the literature as ‘label-switching’ and causes considerable
difficulty in exploring the posterior surface with MCMC sampling. Indeed, the
MCMC sampler can jump between two different modes differing only in the
ordering of the labels, making it impossible to compute ergodic averages to
obtain posterior Monte Carlo estimates of the model parameters (Diebolt and
Robert, 1994). This fact reflects the impossibility of learning any feature of
the distribution (24) that depends on the labels of the components.

Among the many solutions proposed in the literature, the most common is
to break the exchangeability of the prior distribution by imposing constraints
in the parameter space, such as λ1 < λ2 < · · · < λk, which can be easily inte-
grated into the MCMC sampler. However, there is no guarantee that these
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constraints can completely eliminate the symmetries in the posterior distribu-
tion. Other solutions work as post-processing algorithms of the MCMC output
and generate a relabeling based on a suitable loss function (Celeux et al, 2000;
Stephens, 2000; Li and Fan, 2016). It is generally accepted that these meth-
ods perform better than imposing constraints on the parameter space, since
the resulting posterior marginal distributions of the parameters are often uni-
modal and well separated. However, they are computationally expensive and
not fully justified from a theoretical point of view, since they implicitly impose
constraints that are not part of the prior specification (Kunkel and Peruggia,
2020). Many alternative algorithms for relabeling have been proposed in the
literature, but we do not know how they affect posterior inference and how to
choose between them.

In contrast, variational inference, like any optimization algorithm, depends
on initial conditions and focuses on one of the possible k! modes of the pos-
terior surface depending on those conditions. For the class of models we are
concerned with, this is of course not a drawback, since we know that a single
mode contains all the information for exploring latent groups and estimating
parameters (Blei et al, 2017).

5 A coordinate ascent variational inference
(CAVI) algorithm

A simple algorithm for maximizing the ELBO is based on a coordinate ascent
scheme, where we maximize the ELBO for one parameter at a time while hold-
ing all others constant and iteratively updating the estimates until convergence
is achieved (Lee, 2021). For our model, it can be shown that the updating
equations have a particularly simple expression. In particular, the updating
equation of γij is, for i = 1, 2, . . . , n and j = 1, 2, . . . , k:

γij ∝ exp

{ p∑
ℓ=1

yiℓEq [log βjℓ] + Eq [log λj ]︸ ︷︷ ︸
xij

}
. (25)

The expected values under the variational distribution q appearing in (25)
coincide with the expected values of the minimal sufficient statistics of the
Dirichlet distribution when represented as a natural exponential family in
canonical form (Nielsen and Garcia, 2009). Their explicit expression can be
found in Appendix B. Since for fixed i the set {γij ; j = 1, 2, . . . , k} is a set
of Multinational parameters that sum to 1, the proportionality sign in (25)
indicates that the elements of this set must be normalized after the update is
complete as follows:

γij =
exp(xij)∑k
s=1 exp(xis)

. (26)
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This normalization requires special attention because the first summand
in (25) is usually a very large negative number that may cause an underflow
when exponentiated. In this case, a common solution is to resort to the log-
sum-exp trick, which transforms the normalized values (26) to a logarithmic
scale (Blanchard et al, 2021):

log γij = log

(
exp(xij)∑k
s=1 exp(xis)

)
=

= log exp(xij)− log

k∑
s=1

exp(xis) =

= xij − log

k∑
s=1

exp(xis) =

= xij − log

k∑
s=1

exp(xis) exp(Zi) exp(−Zi) =

= xij − Zi − log

(
k∑

s=1

exp(xis − Zi)

)
=

= log

(
exp(xij − Zi)∑k
s=1 exp(xis − Zi)

)
,

and taking Zi = max{xi1, x12, . . . , xik} we have exp(xij − Zi) ≤ 1 and:

k∑
s=1

exp(xis − Zi) ≥ 1,

even though individual terms of the above summation may underflow to 0.
The update equations of ηj , for j = 1, 2, . . . , k, and ϕjℓ, for j = 1, 2, . . . , k

and ℓ = 1, 2, . . . , p, are respectively:

ηj = α+

n∑
i=1

γij , (27)

ϕjℓ = θ +

n∑
i=1

yiℓγij . (28)

Proof of these update equations can also be found in Appendix C. For the
convenience of the reader, we report the pseudo-code of CAVI in Algorithm 1.
In general, it can be shown that the ELBO is a concave function with respect
to each of the arguments considered separately, holding all others constant
(Plummer et al, 2020). Thus, the maximization of the ELBO for each param-
eter separately has only one solution that can be obtained with first partial
derivatives without resorting to the computation of second partial derivatives
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or Hessian matrices. However, the ELBO is in general a non-concave function,
and therefore CAVI only guarantees convergence to a local optimum that can
be sensitive to the initial values (Blei et al, 2017). Results that guarantee con-
vergence to a local maximum are known only in special cases that strongly
depend on the model structure (as in the case of finite Gaussian mixtures,
Titterington and Wang, 2006, or LDA, Awasthi and Risteski, 2015). For the
proposed model, investigating the sensitivity to the initial values by monitor-
ing the ELBO is a reasonable diagnostic to implement variational inference
with the CAVI algorithm.

Algorithm 1 CAVI algorithm for the proposed hierarchical model

Input: data y = (y1, y2, . . . , yn), number of components k, prior hyperparam-
eters θ, α > 0

Initialize: variational parameters γij for i = 1, 2, . . . , n, j = 1, 2, . . . , k; ηj for
j = 1, 2, . . . , k; ϕjℓ for j = 1, 2, . . . , k, ℓ = 1, 2, . . . , p

Output: Optimized variational density q(β, z, λ|ν⋆) =
∏k

j=1 q(βj |ϕ⋆
j ) ×∏n

i=1 q(zi|γ⋆
i )× q(λ|η⋆)

1: while the ELBO has not converged do
2: for i = 1, 2, . . . , n do
3: for j = 1, 2 . . . , k do
4: γij = exp

{∑p
ℓ=1 yiℓEq [log βjℓ]

}
exp {Eq [log λj ]}

5: γij ← γij∑k
s=1 γis

6: end for
7: end for
8: for j = 1, 2, . . . , k do
9: ηj ← α+

∑n
i=1 γij

10: end for
11: for j = 1, 2, . . . , k do
12: for ℓ = 1, 2, . . . , p do
13: ϕjℓ ← θ +

∑n
i=1 yiℓγij

14: end for
15: end for
16: end while

The computational properties of the CAVI algorithm call into question the
comparison with MCMC methods when the number of mixture components
is very large. It is well known in the literature that MCMC algorithms have
numerous structural difficulties when the number of k components is very large
(Celeux et al, 2018b). In this case, the Metropolis-Hastings schemes are dif-
ficult to tune and are practically usable only for moderately sized mixtures
(Frühwirth-Schnatter, 2006). Gibbs sampling has been shown to be the only
computationally feasible method for high-dimensional mixtures. However, sev-
eral authors have noted that Gibbs sampling often fails to converge to a smaller
number of nonempty clusters and promotes overfitting by providing solutions
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where we have many sparse clusters with only a few instances (Malsiner-Walli
et al, 2016; Celeux et al, 2018b; Chandra et al, 2020). None of these prob-
lems occur with variational inference. Each run of the algorithm converges to
a single local maximum of the ELBO, so we can use multiple runs to find
the optimal one. Of course, this procedure is not painless, since in the case
of a high-dimensional mixture we need a large number of runs, which obvi-
ously affects the total computation time. Moreover, the obtained solution may
be suboptimal, since the local maxima explored may not contain the absolute
maximum.

5.1 Additional considerations

The CAVI algorithm outputs the marginal components of the optimized vari-
ational distribution q(β, z, λ|ν⋆), which can be used to obtain approximate
posterior estimates of the model parameters. In particular, exploiting the fact
that the variational distribution of each βj is a Dirichlet:

β⋆
jℓ =

ϕ⋆
jℓ∑p

ℓ=1 ϕ
⋆
jℓ

, (29)

and in the same way approximate posterior estimates of the mixing weights
are given by:

λ⋆
j =

η⋆j∑k
s=1 η

⋆
s

. (30)

Applying the same principle again, the approximate posterior estimate of
the probability of success associated with the marginal component zij of the
indicator variable zi is calculated as follows:

q(zij = 1|γ⋆
i ) = Eq(zij |γ⋆

i ) = γ⋆
ij . (31)

The use of these probabilities becomes relevant for unsupervised classifica-
tion. The decision rule is to assign the label jMAP

i that satisfies the following
condition:

jMAP
i = argmax

j
q(zij = 1|γ⋆

i ). (32)

The use of (32) to decide how to partition the sample observations is obvi-
ously justified from an intuitive point of view. Moreover, it is well known that
the decision rule (32) minimizes the expected posterior loss if we use a 0/1 loss
function to penalize incorrect allocations (Hastie et al, 2009).

5.2 Computational complexity

The analysis of the computational complexity of the algorithm allows us to
make some quantitative considerations about its performance. In particular,
looking at Algorithm 1, we can identify the following three subcomponents,
for each of which we estimate the time complexity:
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- O(n ∗ k) for the block 2-7 (two nested for loops), having the dominant
statements at lines 4 and 5;

- O(k) for the block 8-10, having the dominant statement at line 9;
- O(k ∗ p) for the block 11-14, having the dominant statement at line 13.

The time complexity of all the three subcomponents have to be multiplied
by the number of iterations of the while loop, which upper bound is maxiter
(for example, maxiter = 50). Since it is a constant, it is asymptotically domi-
nated by the other terms and does not affect the overall complexity. Therefore,
the whole algorithm has the following time complexity:

O(n ∗ k) +O(k) +O(k ∗ p) = O(n ∗ k) +O(k ∗ p). (33)

Therefore, it is clear that if the number of documents is greater than the
number of terms, O(n∗k) dominates the whole time complexity (and, thus, the
block 2-7 is dominant); otherwise, the term O(k ∗p) dominates the whole time
complexity (and, thus, the block 11-14 is dominant). The total time complexity
can also be generalized as:

O(max(n, p) ∗ k). (34)

As explained in detail earlier, the run of the algorithm is repeated nruns

times to explore multiple modes of the ELBO surface. For the same reasons
given above, the asymptotic time complexity of the algorithm does not change,
since nruns is a constant. We can also say that the running time is proportional
to nruns, i.e., it grows linearly with the number of runs. Thus, if n or p are
not excessively large, Algorithm 1 remains computationally feasible even for
high-dimensional mixtures, where a large number of modes will likely need to
be explored to find the optimal solution.

6 Experimental work

6.1 Benchmark models

Geometric clustering algorithms

Geometric clustering procedures partition the feature space into k disjoint
subsets (clusters) based on the distance between any two data points. The
classical algorithms used for comparisons fall into two classes (Xu and Tian,
2015, is a useful survey):

- Hierarchical agglomerative procedures. Simple, complete and average linkage;
Ward method (in each step the method finds the pair of clusters that leads
to a minimum increase in total variance within the clusters after merging);
Centroid method (the distance between two clusters is the distance between
the two mean vectors of the clusters).
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- Iterative method. Spherical k-means; Partitioning around medoids (PAM;
unlike k-means, which uses centroids, PAM uses medoids, which are always
actual points in the data set).

We measured the distance between two documents using cosine dissimilar-
ity to eliminate the confounding effect of variability in the number of terms in
each document (Dhillon and Modha, 2001; Hornik et al, 2012):

d(yi, yj) = 1− cos(ŷiyj) = 1− ⟨yi, yj⟩
||yi|| ||yj ||

∈ [0, 2], (35)

where ŷiyj indicates the angle between vectors yi and yj .

The Anderlucci-Viroli (AV) model

More parsimonious versions of our model that can be estimated without varia-
tional inference are indeed possible. For example, Anderlucci and Viroli (2020)
propose the following specification:

yi|β, zi
ind.∼ Multinomialp(βj), i = 1, 2, . . . , n, (36)

zi|λ
ind.∼ Multinoullik(λ), i = 1, 2, . . . , n, (37)

βj |θj
ind.∼ Dirichletp(θj), j = 1, 2, . . . , k, (38)

with θj ∈ Rp, where the class-conditional parameters θj and the mixture
weights λ are assumed to be fixed and unknown. For parameter estimation,
the authors consider maximum likelihood estimation and propose a first-order
iterative procedure based on gradient descent. The paper states that the pro-
posed algorithm is efficient as it generally converges quickly in a few iterations.
However, the dependence of the obtained solutions on the initial conditions was
not further investigated, although there is a possibility that their algorithm
converges to insensitive or spurious maxima or remains trapped in degenera-
cies of the likelihood surface (Baudry and Celeux, 2015). More importantly,
the proposed estimation procedure is essentially based on the fact that the
class-conditional distributions are Dirichlet-Multinomials after integrating out
the Multinomial parameters (see Appendix A). We will discuss this crucial
assumption in Section 7.

Latent Dirichlet allocation (LDA)

The specification of k probability distributions for the Multinomial parameters
in the proposed model suggests an obvious similarity to the generative struc-
ture of the Latent Dirichlet Allocation (LDA) model presented in Blei et al
(2003), in which we also have k probability distributions over the vocabulary
of terms V . However, with the proposed hierarchical specification, each doc-
ument can be hard-clustered to a single topic. In contrast, the LDA model is
a mixed membership model (Airoldi et al, 2014), and its starting point is an
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uncollapsed product-Multinoulli likelihood over a stream of terms, with each
word associated with a latent topic. In other words, multiple topics can occur
simultaneously in each document in the corpus, and a general goal of interest
is to find out which themes are predominant. This model has been used exten-
sively for the analysis of textual data (and also for the analysis of biological
data; see, e.g. Sankaran and Holmes, 2019, for analysis of human microbiota
data based on LDA). However, it does not automatically provide better results
than the standard mixture of Unigrams model and its extensions, especially for
short texts or when the coexistence of multiple thematic contents is a difficult
assumption to maintain.

6.2 Binary clustering of short texts

Unsupervised classification of short texts is often challenging when using tradi-
tional BOW representations due to sparse text representation (Manning et al,
2008; Rakib et al, 2020). To consider a dataset affected by these issues, we
used a subset of the Reuters 21578 collection (Apté et al, 1994) previously used
by Anderlucci and Viroli (2020) to compare the results of frequentist estima-
tion of their model described in Subsection 6.1. The authors showed how their
mixture of Dirichlet-Multinomials outperformed a number of standard com-
petitors (including the Näıve Bayes mixture of Unigrams and, not surprisingly
given the shortness of the texts, Latent Dirichlet Allocation). The corpus con-
sidered consists of n = 70 documents, 50 of which belong to the acq class and
20 to the crude class, with a clear imbalance between the two classes.

The raw text data were analyzed with R 4.2.2 (R Core Team, 2022) using
the infrastructure provided by the library tm (Feinerer et al, 2008; Feinerer and
Hornik, 2020). The following preprocessing steps were applied to each docu-
ment in the order given: removal of extra white spaces, removal of punctuation
and numbers, conversion to lowercase, removal of stop words, stemming to
reduce inflectional forms to a common base form, successive recompletion using
the most frequent match as completion, tokenization into unigrams (single
terms). The final result is the vocabulary of terms V and the term-document
matrix, whose generic element yiℓ represents the frequency of occurrence of
the ℓ-th term of V in the i-th document. Specifically, the dimension of the
term-document matrix was 70× 1518, with a sparsity of 96% and an average
number of words per document of 54.79.

Next, we applied our model with k = 2 and used the default values α = 1
and θ = 5/k. This choice is neutral with respect to α and weakly informative
with respect to θ: in the absence of additional information on which to base
another choice, i.e., a convincing external validation showing that a different
setting has a decisive impact on the clustering process, they appear reasonable,
leaving most of the responsibility for updating the posterior distribution to the
data. It is also important to remember that the components of the posterior
distribution are decoupled in variational inference. For example, we can change
the value of α without affecting the shape of the posterior distribution of β
and vice versa (see also the update equations in Algorithm 1).
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We applied the CAVI algorithm implemented in R 4.2.2 with nruns=100,
starting from randomly chosen initial values, and for each of these runs we
alternated between the update equations (25), (27) and (28) with maxiter=50.
As an example, in Figure 3 we show a subset of the trajectories of the CAVI
algorithm. In general, the convergence is very fast, and it is obvious that each
run reaches a different stationary point since we have many different local
maxima in the ELBO. Better local optima lead to a variational approximation
closer to the exact posterior. Since the ELBO is guaranteed to increase mono-
tonically across CAVI iterations, any behavior of the trajectories that does not
satisfy this requirement indicates a programming error in the code.

Fig. 3 Some trajectories of the CAVI algorithm applied to Reuters 21578 data (k = 2).

The results obtained were accuracy = 95.71% and ARI = 82.92 (Adjusted
Rand Index), versus accuracy = 97.14% (ARI = 88.39) obtained by Anderlucci
and Viroli (2020). However, we repeated the numerical experiment nruns =
500 times and obtained accuracy = 98.57% (ARI = 94.08) as the optimal
result, with only one document of class crude incorrectly labeled as acq. This
result suggests that there are local maxima in the ELBO surface that are
not easily explored and that provide an almost exact approximation to the
posterior distribution using the variational approximation. To explore these
modes, we need to run the algorithm a sufficiently large number of times.
However, this strategy is not computationally infeasible because, as mentioned
earlier, the total computation time increases linearly as the number of runs
increases.

6.3 Multiclass clustering

For this specific experiment, we adopted the dataset BBCSport, which is part
of a larger collection provided for use as a benchmark for machine learning and
text mining research (Greene and Cunningham, 2006; Kaggle, 2022). The cor-
pus consists of n = 737 documents from the BBC Sport website corresponding
to sports news articles in five topical areas from 2004-2005:
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– athletics (101 documents, 13.70%)
– cricket (124 documents, 16.82%)
– football (265 documents, 35.96%)
– rugby (147 documents, 19.95%)
– tennis (100 documents, 13.57%)

The documents in the 5 classes show a considerable degree of semantic
similarity, because although they refer to different sports, they clearly fall
under the general thematic content of news published by a sports newsroom.
Also in this case, the corpus was subjected to the same preprocessing steps as
in the previous example, resulting in a large matrix 737×7883 with an extreme
sparsity level of 98.58%. Therefore, we removed all terms that occurred less
frequently, i.e., all terms t ∈ V for which DFt < 0.05× n, where DFt indicates
the document frequency of t ∈ V . The resulting matrix was 737 × 207 with
an overall sparsity of 82%. Also in this case, we ran the CAVI algorithm with
k = 5, with nruns=100 and maxiter=100, α = 1 and θ = 5/k. A subset
of the trajectories is shown in Figure 4, which confirms the impression of an
extremely fast convergence to local maxima.

Fig. 4 Some trajectories of the CAVI algorithm applied to BBCSport data (k = 5).

Unlike the previous example, where it was a simple task to assign the
correct labels to the partitions created by the clustering algorithm, in this
case accuracy was defined based on the best match between the true labels
ci ∈ {1, 2, . . . , k} and the cluster labels ĉi as follows:

accuracy = max
p∈P

1

n

n∑
i=1

1 (ci = p(ĉi)) , (39)

where P is the set of all permutations in {1, 2, . . . , k}. To solve the optimization
problems in (39) in polynomial time, we used the Hungarian solver from the
package RcppHungarian (Silverman, 2022) to maximize the sum of diagonal



Springer Nature 2021 LATEX template

20 VB estimation of hierarchical Dirichlet-Multinomial mixtures

elements of the confusion matrix with respect to all permutations of rows or
columns. The results obtained are shown in Table 1, where all calculations
were performed with k = 5 groups for comparison (k = 5 topics in the case of
the LDA model). For the two algorithms whose results depend on the choice
of initial conditions (spherical k-means and LDA), we performed 50 runs with
different initial seeds, showing the best result in terms of accuracy.

Table 1 Adjusted Rand Index (ARI ) and accuracy expressed as percentage (accuracy)
for different clustering methods applied to BBCSport data.

Algorithm ARI accuracy

Hierarchical – Single linkage with cosine dissimilarity 0.00 35.96%
Hierarchical – Complete linkage with cosine dissimilarity −0.03 32.43%
Hierarchical – Average linkage with cosine dissimilarity 0.00 36.23%
Hierarchical – Ward’s method with cosine dissimilarity 0.37 58.07%
Hierarchical – Centroid method with cosine dissimilarity 0.00 35.96%
Partitioning around medoids (PAM) with cosine dissimilarity 0.32 64.45%
Spherical k–means with cosine dissimilarity 0.49 70.56%
Latent Dirichlet Allocation (LDA) with k = 5 topics 0.21 51.70%
Hierarchical mixtures of Dirichlet–Multinomials (CAVI) 0.58 74.22%

The poor performance of purely geometric hierarchical methods, which
cannot take into account the semantics of the problem, is of course no sur-
prise, with some exceptions such as Ward’s method, which relies on directly
minimizing the total variance within each cluster, and the PAM algorithm,
which iteratively assigns each document to the nearest medoid to form clus-
ters. The best non-probabilistic method is the spherical k-means algorithm
(Hornik et al, 2012), which achieves comparable performance to the analysis
originally presented in Dhillon and Modha (2001). The LDA model also per-
forms poorly, due to the aforementioned fact that each document cannot be
considered a mixture of well-separated topics.

Apart from the fact that the proposed model works most accurately on this
dataset, it should also be noted that, unlike geometric methods, it provides
estimates of βj distributions (the topics) that can provide interesting clues for
interpreting clusters. In Figure 5, we provided estimates of the probability of
occurrence of the top 10 terms sorting the rows of the estimated β by the
estimated weights λ⋆

j of each component. For example, the first distribution
contains terms such as chelsea and football, which immediately point to
football as the thematic content of these news (note also the estimated weight,
λ⋆
2 = 32.71% versus λ2 = 35.96%). The third component is clearly related

to athletics, given the presence of terms such as race and olympiad (λ⋆
4 =

13.84% versus λ4 = 13.70%). For the other three distributions, although the
estimated weights essentially reflect the actual weights (which are not known in
real applications), we have considerable difficulty in assigning the documents
classified in these groups to a well-defined thematic content. This is reflected
in the classification accuracy achieved (not greater than 75%), which in turn
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Fig. 5 Top-10 terms for each row of the estimated β matrix. The rows of β have been
sorted by the estimated weights λ⋆

j (j = 1, 2, . . . , k) of each component.

reflects the considerable overlap we can find between news about cricket and
news about rugby. Tennis, of course, has its own specific terminology, but
the terms that have high discriminatory power (e.g., serve, let, ace, fault) are
rarely mentioned in the published news. They are often brief and generally
serve only to inform about the result of the match and the statements of the
participants in the post-match press release.

6.4 Model determination

In the previous examples we assumed that the number of components k was
known. However, this is almost never the case, and an important question,
both theoretically and practically relevant, is whether the unknown number
of components k can be estimated from the output of the CAVI algorithm.
The marginal likelihood is intractable in principle for our model, but could be
replaced by the final value of ELBO, which is a tight lower bound for the log-
marginal likelihood (as proposed, e.g., in Blei et al, 2017). However, there are
some problematic issues in this context that require further discussion. First,
the ELBO is certainly a lower bound on model evidence, but the variational
gap varies between different models, so ELBO comparisons can be mislead-
ing. Second, for the reasons outlined in Section 5, it makes sense to examine
only one modal region of the posterior distribution if our goal is to estimate
the parameters, although this may not be sufficient if our goal is to examine
the entire density surface of the marginal likelihood. This problem is known
to occur with sampling-based methods, as the literature describes that tradi-
tional MCMC algorithms often do not mix appropriately and do not explore
the entire support of the target distribution. Marginal likelihood estimates
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obtained from draws of poorly mixed samples are prone to bias (Frühwirth-
Schnatter, 2004; Marin and Robert, 2008). These considerations also apply
to variational inference, since the algorithm approximates the volume occu-
pied by the posterior distribution of parameters by only one of the possible k!
modes. In Murphy (2012) a possible correction is proposed, but the extent of
bias reduction is not well understood.

Another potential problem arises from the fact that the components of the
approximated posterior distribution are assumed to be conditionally indepen-
dent. Thus, the ELBO is an objective function that can be written as a linear
sum of terms (which greatly simplifies the calculations). However, the first
term (16), which is directly related to the Multinomial likelihood is very small
on the logarithmic scale and dominates the other summands. Consequently,
using ELBO to select k often leads to overfitting and promotes sparsity of
component weights, as the optimized value of ELBO as a function of k slowly
increases with increasing k, while new and poorly identified components whose
mixing weights are very close to zero enter the model and increase the relative
importance of the other summands. This effect is well documented in the liter-
ature dealing with variational inference for Multinomial likelihood and is not
mitigated even when we compute the predictive likelihoods on held-out data
(Blei et al, 2003; Nikita, 2020).

A popular alternative for model determination is the Bayesian Information
Criterion (BIC), which approximates the marginal likelihood under suitable
conditions by ignoring the impact of the prior (Celeux et al, 2018a). As in Fra-
ley and Raftery (2007), we consider a slightly modified version of this criterion
defined as follows:

BICk = −2l⋆k + Pk log(n), (40)

where l⋆k denotes the log-likelihood evaluated in the approximate parameter
estimates obtained by the variational algorithm, while Pk = k(p−1)+(k−1) =
kp−1 is the total number of free parameters of the likelihood. The BIC assumes
that the data generating process is within the model collection, and it has
been shown to be consistent for the number of components of a mixture model
when the probability distribution of the mixture components is bounded and
satisfies mild regularity conditions (Keribin, 2000). We can legitimately replace
the standard maximum likelihood estimates with the variational Maximum a
Posteriori (MAP) estimates and maintain the same asymptotic validity for BIC
convergence. It should also be noted that, for reasons of numerical stability,
it is preferable to compute the individual terms of the log-likelihood on a
logarithmic scale, again by resorting to a numerical trick of the log-sum-exp
type:

l⋆k = log p(y|β⋆, λ⋆) = log

n∏
i=1

k∑
j=1

λ⋆
jp(yi|β⋆

j ) =

=

n∑
i=1

log

k∑
j=1

λ⋆
jp(yi|β⋆

j ) =

n∑
i=1

log

k∑
j=1

exp(log(λ⋆
jp(yi|β⋆

j )) =
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=

n∑
i=1

log

k∑
j=1

exp(log λ⋆
j + log p(yi|β⋆

j )). (41)

However, given the limited precision available for standard floating-point
arithmetic, it is not uncommon for the term log p(yi|β⋆

j ) to get into underflow,
making numerical computation infeasible. In this case, the only possible solu-
tion is trade off efficiency for accuracy, by performing the computations with
a library that implements floating-point arithmetic with arbitrary precision
(such as Rpmfr; Maechler, 2022).

Fig. 6 Optimized ELBOs and variational estimates of the Bayesian Information Criterion
(BIC) variation as a function of k (see the text for details). The dataset used is BBCSport.

Figure 6 shows an example related to the dataset BBCSport. As can be
seen, the ELBO grows slowly and stabilizes only for k ≥ 9, resulting in an
overparameterization corresponding to an unparsimonious representation of
the data. Conversely, the BIC strongly penalizes the number of components,
leading to a slight under-parametrization with respect to the true value k = 5.

To further explore the model selection problem and highlight the differences
between the two criteria (ELBO and BIC), we created a set of synthetic corpora
obtained by subsampling the BBCSport dataset. The actual number of topics
k varied in the set {3, 4, 5}, while the number of documents d in each synthetic
corpus varied in the set {20, 50, 100}. For each possible pair (k, d), we created
50 corpora in the following way:

� To create each of the 50 corpora, we randomly extracted, without repetition,
k integers between 1 and 5 (in the case k = 5, of course, we did no extraction,
since each label appears in each corpus).

� Next, for each of the sampled labels, d documents were sampled without
repetition, so that each synthetic corpus contained exactly n = k × d docu-
ments (of course, the topical areas of each of the 50 synthetic corpora may
be different, except in the case k = 5).
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For each corpus, the same preprocessing scheme was used to extract the
document term matrix, closely following the scheme used for the entire BBC-
Sport dataset. The document term matrix was created from only those terms
that appeared in at least 90% of the documents. As can be easily seen in
Table 2 from the relationship between pavg and n, with this choice the aver-
age sparsity increases significantly with increasing k and d, so the results of
the simulations are not too positively affected as the amount of information
increases with increasing n.

Table 2 Distribution of the number of k⋆ components (for k⋆ varying between 3 and 8)
estimated using either the optimized ELBO or the variational estimate of the BIC
criterion. To estimate this distribution, a series of 50 synthetic corpora were drawn from
BBCSports, each consisting of n = k × d documents, with d = 20, 50, 100 and k = 3, 4, 5
(see text for details).

k n pavg M k⋆ = 2 k⋆ = 3 k⋆ = 4 k⋆ = 5 k⋆ = 6 k⋆ = 7 k⋆ = 8

3 60 278.28 ELBO 6% 20% 24% 16% 6% 20% 8%
150 233.00 0% 0% 12% 20% 18% 28% 22%
300 219.46 0% 0% 0% 8% 22% 24% 46%

3 60 278.28 BIC 88% 12% 0% 0% 0% 0% 0%
150 233.00 22% 48% 26% 4% 0% 0% 0%
300 219.46 0% 20% 56% 14% 10% 0% 0%

4 80 251.62 ELBO 0% 4% 12% 28% 20% 22% 14%
200 225.42 0% 0% 0% 12% 18% 34% 36%
400 211.64 0% 0% 0% 0% 16% 34% 50%

4 80 251.62 BIC 82% 18% 0% 0% 0% 0% 0%
200 225.42 0% 24% 54% 20% 2% 0% 0%
400 211.64 0% 0% 12% 42% 38% 8% 0%

5 100 237.04 ELBO 0% 0% 26% 16% 24% 16% 18%
250 215.02 0% 0% 0% 8% 8% 40% 44%
500 205.46 0% 0% 0% 0% 4% 26% 70%

5 100 237.04 BIC 88% 12% 0% 0% 0% 0% 0%
250 215.02 0% 16% 36% 40% 8% 0% 0%
500 205.46 0% 0% 0% 12% 52% 32% 4%

k: Actual number of class labels used to resample the textual data. | n: Total number of
documents in each of the 50 corpora created by subsampling the BBCSport dataset. For
each label, the same number of documents was randomly selected (e.g., for k = 4 and
n = 80, we have d = 20 documents for each topical area). | pavg: average number of terms
in the document-term matrices of each of the 50 resampled corpora.

For each (k, d) pair, we calculated the variational ELBO and the variational
version of the BIC criterion for each of the 50 corpora (with α = θ = 1; in
this way, variational MAP and maximum likelihood estimates do not differ
excessively). The results presented in Table 2 confirm what we have already
highlighted using purely theoretical considerations. With ELBO, we obtain an
overparameterization that actually increases with increasing n. For example,
for k = 5 and n = 500 in 70% of the cases, the number of components is
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estimated to be k⋆ = 8. Also, for k = 3 and n = 60 we have k⋆ = 8 in 8% of
the cases, a percentage that increases to 46% when n = 300. In contrast, the
BIC criterion shows a clear tendency toward moderate underparametrization.
As expected, the extent of this under-parameterization tends to decrease as n
increases. For example, at k = 5 we have k⋆ = 2 in 88% of cases with n = 100,
while at n = 500 the number of components is correctly set to k⋆ = 5 in 12%
of cases, while k⋆ = 6 occurs most frequently in 52% of cases.

From a theoretical point of view, we know that the BIC criterion can be
interpreted as a penalized estimate of the log-marginal likelihood (Murphy,
2012). Also with the ELBO, the first term (16) represents an expected value of
the log-likelihood (with respect to the variational distribution). The net sum
of the other terms thus represents an expected penalty, which plays the same
role as in the definition of the BIC criterion (41). However, this penalty is too
weak compared to that of the BIC criterion, and for fixed k the importance of
the first term on the logarithmic scale increases as n increases. This behavior
is a consequence of the particular linear approximation of the log-marginal
likelihood operated by variational inference. We will discuss these findings in
more detail in the next Section.

7 Discussion and conclusions

Variational inference for the proposed model requires special attention, as
shown in this paper. Thus, one might wonder what the real advantages of such
an approach are.

The first obvious comparison is with the AV model presented in Subsection
6.1. As mentioned earlier, the estimation algorithm used for this model depends
crucially on the fact that the class-conditional distribution are Dirichlet-
Multinomials. In contrast, variational posterior inference is much more general,
in that it does not in any way exploit the fact that the class-conditional dis-
tributions are Dirichlet-Multinomials. The ELBO is a linear sum of terms,
with the Multinomial likelihood affecting only the expression of the first term.
Any meaningful extension of the proposed hierarchical model is equivalent to
adding new summands to the ELBO and partially reusing the existing ones.
This feature is extremely important as it allows the development of new algo-
rithms by extension and the structural complexity of the model can be easily
scaled by the variational approach. Moreover, the derivation of the new update
equations would not be particularly complicated, since variational inference
is a first-order method that requires only partial first-order derivatives. From
this point of view, we can outline several possible future research directions.

First, (5) and (6) are symmetric Dirichlet distributions with suitably spec-
ified concentration hyperparameters that give the data the responsibility of
updating the posterior. In this way, unlike the classical EM algorithm, we do
not have a true M-step, since the algorithm only needs to iterate along the
update equations. A first obvious extension is to estimate the concentration
hyperparameters θ and α directly from the data. In this case, the ELBO also
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depends on θ and α, and the CAVI algorithm alternately updates the varia-
tional parameters as a function of the current value of the hyperparameters
and the hyperparameters as a function of the current value of the variational
parameters. The expression of the ELBO we derived remains unchanged. In
this way, we have a variational EM algorithm in the sense of the algorithm
originally proposed by Blei et al (2003) for the LDA model, where the final out-
put contains both the optimized value of the ELBO and the Empirical Bayes
estimates of θ and α. Of course, in this case, the effect on the sparsity of the
mixing weight distribution as the number of k components increases must be
carefully considered, and in some cases the solution of estimating α based on
the data may not be appropriate.

Another interesting possibility is to introduce the mixing weights into a
Multinomial logistic regression model (j = 1, 2, . . . , k):

λj =
exp(uj)∑k
s=1 exp(us)

, (42)

where one of the uj-values is set equal to zero for identifiability. Furthermore,
if we write u = (ũ, 0) and separate the zero component from the others, the
values ũj are unbounded and we can fit them into the hierarchical structure
by imposing a multivariate Gaussian prior on them, as in the correlated topic
model proposed in Blei and Lafferty (2007). Alternatively, we can introduce
individual-specific weights λij as a function of a vector of concurrent variables
(such as metadata) via the linear predictor uij = ṽ⊤j xi, where ṽj is a vector of
document-specific coefficients. The idea of structuring the weights of a mixture
as in (42) first appeared in the literature in Dayton and Macready (1988) and
was considered from a Bayesian perspective in Pollice and Bilancia (2000) using
a generic and inefficient Gibbs sampler. Thus, the computational advantages of
variational inference can be easily applied to such a model. Our model can also
be easily transformed into a supervised classification algorithm following the
hierarchical structure of the supervised LDA model (Zhang and Kjellström,
2015).

As for the aspect of determining the number of components, the prelimi-
nary results obtained in Section 6.4 cast a shadow on whether ELBO can be
a valid approximation to the log marginal likelihood for this purpose. Most
likely, the net effect of overparameterization on the estimation is negligible,
since numerous poorly identified components are introduced that have little
overall weight. However, the effect on total computation time is not negligible
if k⋆ becomes very high. In contrast, the BIC criterion shows a better approxi-
mation to the actual number of components, albeit with a tendency to slightly
under-parameterize. Of course, these results are preliminary, and further sim-
ulations are needed, also to test other criteria showing interesting empirical
performance (e.g., the Slope Heuristics, see Baudry et al, 2012). The prob-
lem of determining the number of components in a mixture in the context of
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variational inference remains a largely open problem. Pending further develop-
ments, a recommended empirical solution is to compare the results of the BIC
criterion with those obtained by advanced dimensionality reduction methods,
such as the t-distributed stochastic neighbor embedding algorithm (t-SNE;
van der Maaten and Hinton, 2008), which has shown particularly interesting
properties in identifying the number of groups in multidimensional data.

In summary, the use of variational inference for posterior parameter esti-
mation paves the way for a number of noteworthy developments that can be
implemented with little additional effort and could greatly expand the set of
tools available to the analyst for the study of discrete multivariate data and
unsupervised classification of text data.
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Appendix A The Dirichlet-Multinomial
distribution

The j-th class-conditional distribution of the proposed hierarchical model can
be written in closed form by integrating out the Multinomial parameters (in
what follows zi = j):

p(yi|zi, θ) =
∫

p(yi, β|zi, θ)dβ =

∫
p(yi|β, zi)p(β|θ)dβ =

=

∫
p(yi|βj)

K∏
s=1

p(βs|θ)dβs =

=

∫
p(yi|βj)p(βj |θ)dβj

∫ ∏
−j

p(β−j |θ)dβ−j︸ ︷︷ ︸
1

=

=

∫ (
yi+
yi

) p∏
ℓ=1

βyiℓ

jℓ

Γ (pθ)

Γ(θ)p

p∏
ℓ=1

βθ−1
jℓ dβjℓ =
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=

(
yi+
yi

)
Γ (pθ)

Γ(θ)p
c−1

∫
c

p∏
ℓ=1

βyiℓ+θ−1
jℓ dβjℓ︸ ︷︷ ︸
1

,

where the inverse of the normalization constant c has expression:

c−1 =

∏p
ℓ=1 Γ (yiℓ + θ)

Γ
(∑p

ℓ=1 (yiℓ + θ)
) .

Using the standard notation for the multivariate Beta function:

B(x) = B(x1, x2, . . . , xp) =

∏p
ℓ=1 Γ(xℓ)

Γ
(∑p

ℓ=1 xℓ

) ,
the class-conditional likelihood can be rewritten as:

p(yi|zi, θ) =
(
yi+
yi

)
B(yi + θ)

B(θ)
.

This probability mass function (pmf) defines the Dirichlet-Multinomial dis-
tribution. It was studied, among others, by Mosimann (1962), who showed
that the variance of each marginal component of the j-th class-conditional
distributions is given by:

Var(yiℓ|zi, θ) = yi+E(βjℓ)E(1− βjℓ)

(
yi+ + pθ

1 + pθ

)
,

Thus, the variance of each class-conditional marginal likelihood exhibits
overdispersion with respect to the standard Multinomial distribution. The
magnitude of this overdispersion, which depends on the semantic heterogene-
ity of the underlying documents, is controlled by the term pθ, with higher
values corresponding to lower overdispersion.

Appendix B Calculating the ELBO in explicit
form

We begin by writing the joint distribution of the latent variables and model
parameters that appears in the first term of the ELBO (11):

p(y, β, z, λ|θ, α) =
n∏

i=1

p(yi|β, zi)×
n∏

i=1

p(zi|λ)×
k∏

j=1

p(βj |θ)× p(λ|α)

that is:

log p(y, β, z, λ) =
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=

n∑
i=1

log p(yi|β, zi) + A1

+

n∑
i=1

log p(zi|λ) + A2

+

k∑
j=1

log p(βj |θ) + A3

+ log p(λ|α) + A4

We calculate the expected values of these quantities.

A1 By definition, yi|β, zi ∼ Multinomialp(βs), where the index s corresponds
to the index of the only component of the vector zi that is equal to 1. It follows
that:

log p(yi|β, zi) ∝ log

p∏
ℓ=1

βyiℓ

sℓ =

p∑
ℓ=1

yiℓ log βsℓ,

and that:

Eq

[
n∑

i=1

log p(yi|β, zi)

]
= Eq

[
n∑

i=1

p∑
ℓ=1

yiℓ log βsℓ

]
=

=

n∑
i=1

p∑
ℓ=1

yiℓEq [log βsℓ] =

=

n∑
i=1

p∑
ℓ=1

k∑
j=1

yiℓγijEq [log βjℓ] ,

given (14), since the term Eq [log βjℓ] is a function of the random variable zi
through the index s. We now observe that the variational distribution of βj

can be written as:

q(βj |ϕj) = exp

{
p∑

ℓ=1

(ϕjℓ − 1) log βjℓ −

[
p∑

ℓ=1

log Γ(ϕjℓ)− log Γ

(
p∑

ℓ=1

ϕjℓ

)]}
,

which is a multiparametric exponential family with:

• log βjℓ: minimal sufficient statistics for ℓ = 1, 2, . . . , p.
• ujℓ = ϕjℓ − 1: natural (or canonical) parameters for ℓ = 1, 2, . . . , p.

By defining:

A(uj) =

p∑
ℓ=1

log Γ(ujℓ + 1)− log Γ

(
p∑

ℓ=1

ujℓ + 1

)
,
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it is well known that (in what follows ϕj − 1 ≡ uj componentwise):

Eq [log βjℓ] =
∂A(uj)

∂ujℓ
=

∂A(uj)

∂ϕjℓ

∂ϕjℓ

∂ujℓ
=

=
∂A(ϕj − 1)

∂ϕjℓ

∂(ujℓ + 1)

∂ujℓ
=

∂A(ϕj − 1)

∂ϕjℓ
=

=
∂

∂ϕjℓ

[
p∑

h=1

log Γ(ϕjh)− log Γ

(
p∑

ℓ=1

ϕjh

)]
=

=
∂

∂ϕjℓ
log Γ(ϕjℓ)−

∂

∂ϕjℓ
log Γ

(
p∑

ℓ=1

ϕjh

)
=

= Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)
.

Putting everything together, we get the summand (16) of ELBO. □

A2 Using the independence between the latent indicator variables zi and
λ under the variational distribution, and exploiting the representation of the
variational distribution of λ as a multiparametric exponential family, we easily
obtain the term (17):

Eq

[
n∑

i=1

log p(zi|λ)

]
= Eq

[
n∑

i=1

k∑
j=1

zij log λj

]
=

=

n∑
i=1

k∑
j=1

Eq [zij ]Eq [log λj ] =

=

n∑
i=1

k∑
j=1

γij

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
.

□

A3 From βj |θ ∼ Dirichletp(1pθ) it readily follows that:

log p(βj |θ) = log Γ(pθ)− p log Γ(θ) +

p∑
ℓ=1

(θ − 1) log βjℓ,

and:

Eq

[
k∑

j=1

log p(βj |θ)

]
=
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= Eq

[
k log Γ(pθ)− kp log Γ(θ) +

k∑
j=1

p∑
ℓ=1

(θ − 1) log βjℓ

]
=

= k log Γ(pθ)− kp log Γ(θ) +

k∑
j=1

p∑
ℓ=1

(θ − 1)Eq [log βjℓ] =

= k log Γ(pθ)− kp log Γ(θ) +

k∑
j=1

p∑
ℓ=1

(θ − 1)

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
,

that is the expression in (18). □

A4 As in the previous point, from λ|α ∼ Dirichletk(1kα) we have:

log p(λ|α) = log Γ(kα)− k log Γ(α) +

k∑
j=1

(α− 1) log λj ,

from which (19) follows:

Eq [log p(λ|α)] =

= log Γ(kα)− k log Γ(α) +

k∑
j=1

(α− 1)Eq [log λj ] =

= log Γ(kα)− k log Γ(α) +

k∑
j=1

(α− 1)

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
.

□
If we consider the second addend of the ELBO we have the following

factorization:

q(β, z, λ|ν) =
k∏

j=1

q(βj |ϕj)×
n∏

i=1

q(zi|γi)× q(λ|η),

that is:

log q(β, z, λ|ν) =

=

k∑
j=1

log q(βj |ϕj) + B1

+

n∑
i=1

log q(zi|γi) + B2

+ log q(λ|η) + B3
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If we compute the expected value of log q(β, z, λ|ν) with respect to the
variational distribution q, using a simple algebra and the representation of the
Dirichlet distribution as a multiparametric exponential family, which we have

already seen, we find that the expected values with respect to q of B1 , B2

and B3 correspond to (20), (21) and (22) except the sign, respectively.

Appendix C Maximizing the ELBO

Since we need to maximize each term individually, holding all others constant,
we first isolate the terms in the ELBO that depend on the parameter that is
being updated, and then compute the maximum point.

γij (i = 1, 2, . . . , n, j = 1, 2, . . . , k). It appears in (16), (17), and (21). We

isolate the factors containing γij and add a Lagrangian to the objective func-
tion to account for the condition that such Multinomial parameters sum to 1
for fixed i:

L[γij ] =

p∑
ℓ=1

yiℓγij

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+

+ γij

{
Ψ(ηj)−Ψ

(
p∑

ℓ=1

ηj

)}
−

− γij log γij − L

(
k∑

s=1

γis − 1

)
.

We take the partial derivatives to γij and set them equal to zero:

∂L[γij ]

∂γij
=

p∑
ℓ=1

yiℓ

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+

+

{
Ψ(ηj)−Ψ

(
p∑

ℓ=1

ηj

)}
−

− log γij − γij
1

γij
− L = 0,

from which we obtain:

log γij = −1− L+

p∑
ℓ=1

yiℓ

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+

+

{
Ψ(ηj)−Ψ

(
p∑

ℓ=1

ηj

)}
,
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that is:

γij = exp(−1− L)×

× exp

{
p∑

ℓ=1

yiℓ

[
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)]}
×

× exp

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
∝

∝ exp

{ p∑
ℓ=1

yiℓEq [log βjℓ]

}
exp

{
Eq [log λj ]

}
,

which must be normalized to 1 for each fixed i according to (26). □

ηj (j = 1, 2, . . . , k). Isolating ηj , which appears in (17), (19) and (22), we

have:

L[ηj ] =

n∑
i=1

γij

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
+

+ (α− 1)

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
−

− log Γ

(
k∑

j=1

ηj

)
+ log Γ(ηj)−

− (ηj − 1)

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}
=

=

{
Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)}[
n∑

i=1

γij + α− ηj

]
−

− log Γ

(
k∑

j=1

ηj

)
+ log Γ(ηj).

As above, taking the partial derivatives with respect to ηj and setting them
to 0, we have:

∂L[ηj ]

∂ηj
= Ψ′(ηj)

[
n∑

i=1

γij + α− ηj

]
+Ψ(ηj)(−1)−

−Ψ′

(
k∑

j=1

ηj

)[
n∑

i=1

γij + α− ηj

]
−Ψ

(
k∑

j=1

ηj

)
(−1)−
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−Ψ(ηj)−Ψ

(
k∑

j=1

ηj

)
=

= Ψ′(ηj)

[
n∑

i=1

γij + α− ηj

]
−

−Ψ′

(
k∑

j=1

ηj

)[
n∑

i=1

γij + α− ηj

]
= 0,

which is equivalent to the following equation in ηj :

Ψ′(ηj)

[
n∑

i=1

γij + α− ηj

]
= Ψ′

(
k∑

j=1

ηj

)[
n∑

i=1

γij + α− ηj

]
.

For positive arguments, the Digamma function has exactly one root, so

it is obvious that Ψ′(ηj) and Ψ′
(∑k

j=1 ηj

)
cannot be simultaneously zero.

Therefore, this equation admits a unique solution if and only if:

n∑
i=1

γij + α− ηj = 0,

that is if and only if:

ηj = α+

n∑
i=1

γij .

ϕjℓ (j = 1, 2, . . . , k, ℓ = 1, 2, . . . , p). Isolating ϕjℓ in (16), (18) and (20):

L[ϕjℓ] =

n∑
i=1

yiℓγij

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
+

+(θ − 1)

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
−

− log Γ

(
p∑

ℓ=1

ϕjℓ

)
+ log Γ(ϕjℓ)−

−(ϕjℓ − 1)

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}
=

=

{
Ψ(ϕjℓ)−Ψ

(
p∑

ℓ=1

ϕjℓ

)}[
n∑

i=1

yiℓγij + θ − ϕjℓ

]
−

− log Γ

(
p∑

ℓ=1

ϕjℓ

)
+ log Γ(ϕjℓ).
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Taking the first derivative and setting it to 0:

∂L[ϕjℓ]

∂ϕjℓ
= Ψ′(ϕjℓ)

[
n∑

i=1

yiℓγij + θ − ϕjℓ

]
+

+Ψ(ϕjℓ)(−1)−Ψ′

(
p∑

ℓ=1

ϕjℓ

)[
n∑

i=1

yiℓγij + θ − ϕjℓ

]
−

−Ψ′

(
p∑

ℓ=1

ϕjℓ

)
(−1)−Ψ′

(
p∑

ℓ=1

ϕjℓ

)
+Ψjℓ =

= Ψ′(ϕjℓ)

[
n∑

i=1

yiℓγij + θ − ϕjℓ

]
−

−Ψ′

(
p∑

ℓ=1

ϕjℓ

)[
n∑

i=1

yiℓγij + θ − ϕjℓ

]
= 0,

which, as in the previous case, it has a unique solution in ϕjℓ given by:

ϕjℓ = θ +

n∑
i=1

yiℓγij .
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